#materialscience

Research, development and commercial applications of advanced flexible materials.

Recent Articles

Demystifying Failure Mode and Effects Analyses (FMEAs) in Medical Device Manufacturing

In Brief

Failure Mode and Effects Analysis (FMEA) is a design review tool used to identify and correct all possible failures in a product, service, design or manufacturing process. This step-by-step approach was first initiated in the 1940s by the United States Army and further developed by NASA in the early 1960s.

Read More
 0

Breakdown of a Lateral Flow Test Strip

In Brief

Lateral flow test strips are simple, easy to use devices that can detect the presence or absence of a target analyte (chemical or substance) in a specimen provided by a patient. These tests are typically used at point of care (medical office), at home, or in the laboratory. They are valued for being low-cost, simple, rapid and portable.

Read More
 0

Lab-on-Chip: an Overview

In Brief

Lab-on-chip (LOC) technology has the potential to provide a robust and portable point-of-care (POC) toolset at a fraction of the size and cost of conventional laboratory sampling methods. However, it is still an emerging technology, and commercial applications of LOCs are presently limited. Several major technical bottlenecks hamper the commercial viability of LOCs, including material quality, commercial-scale fabrication challenges, sample complexity, and many other hindrances.

Read More
 0

Biocompatibility Testing for Surface Medical Devices: An Overview

In Brief

All medical device companies must subject their products to a volley of FDA-approved tests to establish the safety of their devices. A particular series of these tests measure the biocompatibility of a product where a device/material cannot measure outside of acceptable tolerance ranges in the following "big three" categories: cytotoxicity, sensitivity, and irritation; other tests may be necessary. Furthermore, the types of tests each device must be subjected to vary according to the amount of contact the product has with a patient:

Read More
 0

3D Bioprinting in Orthopedics

In Brief

The use of flexible materials in the medical field has revolutionized the treatment of a variety of conditions. Orthopedics, in particular, has the potential to benefit enormously from the recent advances in 3D printing. Flexible materials in the form of hydrogels are dominating the research on hard and soft tissue scaffolding. The techniques using hydrogels to create biocompatible scaffolds allow for scalable, customizable products that encourage regeneration of damaged tissue. 

Read More
 0